Phone
  ´ëÇ¥ÀüÈ­ 1577-7956  
  º»     »ç 031-457-9187  
  ´ë     Àü 042-932-1265

Web Site Visitors
  Today 125    
  Yesterday 637    
  Since 2006 1,757,047    


    | ¸®½ºÆ®µ¹¾Æ°¡±â |      


ISO Áï International Standard Organization Àº ¸ðµç ºÐ¾ßÀÇ Ç¥ÁØ (Standard) À» Á¤ÇÏ´Â ¼¼°è ±â°üÀ¸·Î¼­ Çѱ¹ÀÇ
Ç¥ÁØ°úÇבּ¸¿ø¿¡ ÇØ´çÇÏ´Â ¼¼°è ±â°üÀÔ´Ï´Ù.
Accelerated Centrifugal Force ¸¦ ÀÌ¿ëÇÏ¿© Dispersed Material ÀÇ Transmission Profiles À» ÃøÁ¤ÇÏ¿© Dispersion Stability ¸¦
ºÐ¼®ÇÏ´Â ±â¼úÀº ISO 13097 Guideline ¿¡ Á¤½Ä µî·ÏµÇ¾î ÀÖ´Â Technology ÀÔ´Ï´Ù.
* ISO 13097 Guideline Ç¥Áö
ÀÌ Guideline À» Á¤Çϱâ À§ÇØ Àü¼¼°è¿¡¼­ °¡Àå ±ÇÀ§ÀÖ´Â Àü¹®°¡µéÀÎ ISO À§¿ø ¾à 30¿©¸íÀÌ ¸ð¿© ȸÀǸ¦ °ÅµìÇÑ °á°ú
´Ü ÇѸíÀÇ ¹Ý´ëµµ ¾øÀÌ Àü¿ø Âù¼ºÇÏ¿¡ Guideline ÀÌ Ã¤ÅõǾú½À´Ï´Ù. ÀÌ È¸ÀÇ¿¡ Âü°¡ÇÑ ISO À§¿øÀÌ ¼ÓÇÑ ´ëÇ¥ÀûÀÎ ±â°üÀº
´ÙÀ½°ú °°½À´Ï´Ù.
* DuPont, USA
* Technical Univ. Dresden
* Formulaction, France
* LUM, Germany
* Dispersion Technology Inc., USA
* NIST, USA
* AIST, Japan
* TS-Consulting, Japan
* Micromeretics , USA
* BCS and Malvern, UK
* ±âŸ
ISO/TR 13097 Guidelines ´Â ´ÙÀ½°ú °°Àº Ç׸ñÀ¸·Î ±¸¼ºµÇ¾îÀÖ½À´Ï´Ù.
Introduction
1.Scope
2.Terms and definitions
3.Basics of stability
4.Characterizing the change of the state of a dispersion
4.1General comments
4.2Direct methods
4.3.Correlative methods
4.4Procedures to accelerate evaluation of long-term stability
5.Terms and definitions
2. Terms and definitions ¿¡´Â ´ÙÀ½°ú °°Àº ¿ë¾îµé¿¡ ´ëÇÑ Á¤ÀÇ°¡ ³ª¿Í ÀÖ½À´Ï´Ù.
2.1. Agglomeration. Assembly of particles in a dispersed system into loosely coherent structures that are held together by weak physical interactions
2.2. Aggregation Assembly of particles into rigidly joined process
2.3. Coalescence Disappearance of the boundary between two particles (usually droplets or bubbles) in contact, or between one of these and a bulk phase followed by changes of shape leading to a reduction of the toal surface area
2.4. Creaming Rise of the dispersed phase in an emulsion due to the lower density of the dispersed phase (droplets) compared to the continous phase
2.5. Dispersion In general, microscopic multi-phase system in which discontinuities of any state (solid, liquid or gas : discontinous phase) are dispersed in a continuous phase of a different composition or state
2.6. Dispersion Stability Ability to resist change or variation in the initial properties(state) of a dispersion over time, in other words, the quality of a dispersion in being free from alterations over a given time scale
2.7. Flocculation Assembly of particles in a dispersed system into loosely coherent structures that are held together by weak physical interactions
2.8. Flotation Migration of a dispersed solid phase to the top of a liquid continuous phase, when the effective particle density is lower relative to the continuous phase density
2.9. Particle Minute piece of matter with defined physical boundaries
2.10. Ostwald ripening Dissolution of small particles and the redeposition of the dissolved species on the surfaces of larger particles
2.11. Phase inversion Assembly of particles into rigidly joined process
2.12. Phase separation Process by which a macroscopically homogeneous suspension, emulsion or foam separates into two or more new phases
2.13. Sedimentation Settling(separation) of the dispersed phase due to the higher density of the dispersed particles compared to the continuous phase. The accumulation of the dispersed phase at the bottom of the container is evidence that sedimentation has taken place
2.14. Shelf life Recommended time period during which a product(dispersion) can be stored, throughout which the defined quality of a specified property of the product remains acceptable under expected(or specified) conditions of distribution, storage, display and usage
3. Basics of stability
3.1 Stability - Summary
...................(Áß·«)........................
In order to meet the predefined stability criteria of very stable products, analytical techniques having high resolution/sensitivity need to be used and procedures can be required in order to accelerate the alteration. However, because of the interrelated physical, physico-chemical and chemical properties of a liquid dispsersion, adequate acceleration methos should be chosen and validated in the context of a specific product. (stable product ÀÇ predefined stability criteria ¸¦ ÃæÁ·½ÃÅ°±â À§Çؼ­´Â alteration À» acceleration ÇÒ ¼ö ÀÖ´Â high resolution/sensitivity ¸¦ °¡Áø ºÐ¼®±â¹ýÀÌ ÇÊ¿äÇÏ°í ±× procedures °¡ ÇÊ¿äÇÏ´Ù. ±×·¯³ª liquid dispersion °ú °ü·ÃÀÖ´Â ¹°¸®, ¹°¸®È­ÇÐÀû ±×¸®°í È­ÇÐÀû Ư¼º¶§¹®¿¡ ÀûÀýÇÑ acceleration ¹æ¹ýÀÌ ¼±ÅõǾîÁ®¾ß ÇÑ´Ù.)
3.2 Characteristic features with regard to dispersion stability
...................(Áß·«)........................
The state of dispersion stability depends upon numerous interrelated physical, physico-chemical and chemical parameters, and its natural is therefore complex. The parameters may be categorized as follows (dispersion ÀÇ stability »óÅ´ ¼ö¸¹Àº ¹°¸®, ¹°¸®È­ÇÐÀû ±×¸®°í È­ÇÐÀû ¿äÀε鿡 ÀÇÇØ °áÁ¤µÇ¸ç ±× parameter µéÀº ´ÙÀ½°ú °°´Ù. )
a) volume or mass concentration of dispersed phase (e.g. spatial homogeneity, diluted or concentrated)
b) state of the continous phase (e.g. density, viscosity, surface tension, chemical potential, quality of solvent);
c) state of the dispersed phase (e.g. size, shape and density distribution, as well as viscosity of droplets, deformability of particles, structures of particulate surface)
d) interaction between particles/droplets (e.g. electronic and van der waals force, steric and depletion force)
e) interaction betweendispersed and continous phase (e.g. wettability, interfacial tensions, surface and volume rheology, solubility, dissolvability, network formation)
...................(Áß·«)........................
Two essential aspects with regard to dispersion stability are particle-particle interactions and interactions between the dispersed and continous phase (dispersion stability °ü·Ã µÎ°¡Áö Áß¿äÇÑ °ÍÀº particle-particle interactions °ú dispersed and continous phase »çÀÌÀÇ interactions ÀÌ´Ù.)
...................(Áß·«)........................
3.3 Alteration of the state of a dispersion
A. creaming, floatationD. flocculation
B. sedimentationE. oswald ripening
C. cCoalescenceF. phase inversion
4 Characterizing the change of the state of a dispersion
4.1 General comments
4.2 Direct methods
4.2.1 Visual observation
...................(Áß·«)........................
The dispersion is placed in a test-tube, a test-bottle or into the container in which the product is delivered to the end-user and placed into storage. Alterations are visually obervered at appropriate time intervals of days ,weeks or months.Qualitative results are reported as 'yes/no' alterations or 'more/less' than a preset threshold or reference sample. (ºÐ»êÇÑ ¹°ÁúÀ» test tube µî¿¡ ³Ö°í ÀúÀåÇÏ´Â Àå¼Ò¿¡ À§Ä¡½ÃŲ´Ù. dispersion ÀÇ »óź¯È­¸¦ ¸îÀÏ, ¸îÁÖ ¶Ç´Â ¸î°³¿ùÀÇ °£°ÝÀ¸·Î °üÂûÇÑ´Ù. ºÐ»ê¹°ÁúÀÇ Á¤¼ºÀûÀÎ º¯È­ °á°ú´Â '¿¹/¾Æ´Ï¿À' ¶Ç´Â ¾î¶² ±âÁØ¿¡ ´ëÇØ 'Áõ/°¨' À¸·Î¼­ ³ªÅ¸³»°Ô µÈ´Ù.)
...................(Áß·«)........................
4.2.2 Instrumental methods
a) Optical measuring principls
are designed to monitor the changes of the state of dispersion by recording transmission and/or back scattering intensities. (±¤ÇÐÀû ÃøÁ¤¹æ½ÄÀº transmission and/or back scattering À» ÃøÁ¤ÇÏ¿© ºÐ»ê¹°ÁúÀÇ »óÅ º¯È­¸¦ È®ÀÎÇϵµ·Ï ¼³°èµÇ¾îÀÖ´Ù.)
...................(Áß·«)........................
If near-infrared sources are used, in most cases measured intensities do not depend on the optical properties (absorbance) of the continous or dispersed phase. Instruments are available using transmission and/or backscattering (NIR Áï ±ÙÀû¿Ü¼±À» »ç¿ëÇÏ°Ô µÇ¸é ´ëºÎºÐÀÇ °æ¿ì ÃøÁ¤µÇ¾îÁö´Â Tranmission ¶Ç´Â Backscattering ÀÇ ¾çÀº continous or dispersed phase. ÀÇ ±¤ÇÐÀû Ư¼º (Èí±¤µµ) ¿¡ ¿µÇâÀ» ¹ÞÁö ¾Ê´Â´Ù.)
...................(Áß·«)........................
b) X-ray transmission methods
c) Acoustic and electroacoustic spectroscopies
d) Measurements of electrical properties
Direct methods operate in real time and require minutes to months to identify nascent destabilization phenomena. Nevertheless, sensitivity and accuracy of instruments provides the capacity to detect alterations in the state of samples far earlier than visual observations. The techniques described above do not require any sample preparation to measure the kinetics of dispersion state alterations. These methods can be used for measureing shelf life. (direct methods ´Â ½Ç½Ã°£À¸·Î ÃøÁ¤Çϸç destabilization phenomena ¸¦ È®ÀÎÇϴµ¥ ¼öºÐ¿¡¼­ ¼ö°³¿ùÀÌ ÇÊ¿äÇÏ´Ù. ±×·³¿¡µµ ÃøÁ¤Àåºñ´Â visual observation ¹æ¹ýº¸´Ù ÈξÀ ´õ »¡¸® sensitivity ¿Í accuracy °¡ Ź¿ùÇÑ °á°ú¸¦ ³ªÅ¸³½´Ù. À§ ±â¹ýµéÀº dispersion »óÅ º¯È­¸¦ ÃøÁ¤ÇϱâÀ§ÇÑ º°µµÀÇ sample preparation °úÁ¤À» ÇÊ¿ä·Î ÇÏÁö ¾Ê´Â´Ù. ÀÌ ±â¹ýµéÀº ¹°ÁúÀÇ Shelf Life ¸¦ ÃøÁ¤Çϴµ¥ »ç¿ëµÉ ¼ö ÀÖ´Ù.
4.3 Correlative methods
Correlative methods focus on determination of a single physical parameter of the state of a dispersion that is known to correlate with stability of the dispersion. For example one of the following parameters may be measured and compared with pre-defined acceptable values. (correlative methods ´Â ºÐ»ê¹°ÁúÀÇ ¾ÈÁ¤¼º°ú »óÈ£¿¬°üÀÌ ÀÖ´Ù°í ¾Ë·ÁÁø dispersion stability ÀÇ ÇϳªÀÇ ¹°¸®Àû parameter ¸¦ ÃøÁ¤ÇÏ´Â °ÍÀÌ´Ù. ¿¹¸¦ µé¸é ´ÙÀ½°ú °°Àº parameter µéÁß Çϳª¸¦ ÃøÁ¤ÇÏ°í ¹Ì¸® ¼³Á¤µÈ ±âÁØ°ú ºñ±³ÇÏ´Â °ÍÀÌ´Ù.
a) density differences.
b) mean particle size
c) particle size distribution
d) electrophoretic mobility, zeta potential
e) concentration of particles/droplets larger than a stated size value; f) rhelogical parameters
...................(Áß·«)........................
The advantage of this approach is that the evaluation may be performed immediately after the formulation of a new dispersion or after processing the product. A representative sample is needed, and the measurement technique may sample preparation which can alter the state of dispersion. Care should be taken validate such procedures. (ÀÌ·¯ÇÑ ±â¹ýµéÀº dispersion À» ÇÑ Á÷ÈÄ ¶Ç´Â °øÁ¤À» ¸¶Ä£ ÈÄ Áï½Ã ºÐ»ê ¹°ÁúÀ» ºÐ¼®ÇÒ ¼ö ÀÖ´Ù´Â ÀåÁ¡ÀÌ ÀÖ´Ù. ±×·¯³ª ÀÌ ¹æ¹ýÀº Ç¥ÁØÀûÀÎ sample ÀÌ ÇÊ¿äÇÏ°í ¶ÇÇÑ ÃøÁ¤À» Çϱâ À§ÇÑ º°µµÀÇ sample Áغñ°úÁ¤ÀÌ ÇÊ¿äÇѵ¥ ÀÌ sample preparation °úÁ¤¿¡¼­ ºÐ»ê ¹°ÁúÀÇ diseprsion state °¡ º¯È­µÉ °¡´É¼ºÀÌ ÀÖÀ¸¹Ç·Î ¸¹Àº ÁÖÀÇ°¡ ¿ä±¸µÈ´Ù.)
...................(Áß·«)........................
4.4 Procedures to accelerate the evaluation of long-term stability
4.4.1 Purpose
Shorter evaluation time in research and develoment (R&D) and pre-shipping quality control (QC) is a challenge for highly stable dispersions (e.g. cosmetics, dispersions for constructionm agrochemicals). (¾ÈÁ¤¼ºÀÌ ¸Å¿ì ¶Ù¾î³­ ºÐ»ê¹°ÁúÀÎ È­ÀåÇ°, ³ó¾àÇ° µîÀÇ ºÐ¾ß¿¡¼­´Â R&D ¿Í QC ¿¡¼­ ºÐ»ê ¾ÈÁ¤¼ºÀÇ ½Å¼ÓÇÑ evaluation ¿¡ ´ëÇÑ ÇÊ¿ä°¡ ¸Å¿ì Å©´Ù.)
4.4.2 Mechanical procedures
a) Inclination principle
sedimentation and creaming are driven by gravity and their velocities depend on the friction between the separating dispersed and continous phase inopposite directions. Counterintuitively, a phase separation may be accelerated by the fact that particles sediment or cream in an inlined measuring cell faster than if the tube is vertical (Boycott effect). (sedimentation °ú creaming Àº Á߷¿¡ ÀÇÇØ À¯µµµÇ¾î Áö¸ç ±× ¼Óµµ´Â ¹Ý´ë ¹æÇâÀ¸·Î ÀÛ¿ëÇÏ´Â dispersed phase ¿Í continous phase »çÀÌÀÇ ¸¶Âû¿¡ ÀÇÇØ °áÁ¤µÈ´Ù. ÀÌ»óÇÏ°Ôµµ tube °¡ Á÷°¢À¸·Î ÀÖÀ»¶§º¸´Ù ±â¿ï¾îÁ® ÀÖÀ»¶§ ³»¿ë¹°ÀÇ sedimentation or creaming ÀÌ ÈξÀ ´õ (2~20¹è) »¡¸® ÀϾ´Ù. (º¸ÀÌÄàÈ¿°ú) )
...................(Áß·«)........................
b) Mechanical energy
1) Centrifugation
is known that centrifugation accelerates phase separation and therefore new or optimized formulations of a given dispersion type may be ranked acording to their stability. The same is true for process optimization or QC of dispersionproduct. As ranking of monitored alterations of the chosen stability metrics at the same measuring conditions, mainly acceleration, is often sufficient, extrapolation to gravity condition would be of interest. Earth acceleration (gravity) g in Stokes law has to be replaced by centrifugal acceleration a. The later depends on the square of the rotational speed and on the distance between the rotor centre and position of the sample region under consideration. The ratio of the centrifugal to gravitational acceleration gives the dimensionless relative centrifugal acceleration (RCA). The RCA-value indicates how much faster the terminal sedimentation or creaming velocity of the particles is in a centrifugal field, compared to gravity under otherwise identical conditions. In other words, centrifugation time multiplied by RCA estimates the appropriate time scale to detect the same changes of dispersion state under gravity..
(centrifugation Àº ºÐ»ê¹°ÁúÀÇ phase deparation À» °¡¼ÓÈ­½ÃÄÑ ºÐ»ê ¹°ÁúÀÇ stability Á¤µµ¿¡ µû¸¥ ¼øÀ§¸¦ Á¤ÇÏ´Â °ÍÀ» °¡´ÉÇÏ°Ô ÇÑ´Ù. ÁÖ·Î acceleration °ú °°Àº µ¿ÀÏÇÑ ÃøÁ¤ Á¶°ÇÇÏ¿¡¼­ stability ÀÇ º¯È­¸¦ ÃøÁ¤ÇÏ¿© ¼øÀ§¸¦ Á¤ÇÏ´Â °ÍÀÌ ÃæºÐÈ÷ °¡´ÉÇϱ⠶§¹®¿¡ ÀÚ¿¬ Áß·Â Á¶°Ç¿¡ ´ëÇÑ ÃßÁ¤µµ °¡´ÉÇØÁø´Ù. Stokes ¹ýÄ¢ÀÇ Á߷°ªÀº centrifugal acceleration °ª a ·Î ġȯ µÇ¾îÁö°í ÀÌ a °ªÀº ȸÀü¼ÓµµÀÇ Á¦°ö, ±×¸®°í ÃøÁ¤¹üÀ§³»ÀÇ °Å¸®¿¡ ºñ·ÊÇÑ´Ù. Á߷°ª¿¡ ´ëÇÑ ¿ø½É·ÂÀÇ ºñÀ²ÀÌ relative centrifugal acceleration (RCA) °¡ µÈ´Ù. ÀÌ RCA °ªÀº ÀÔÀÚ°¡ Á߷¿¡ ºñÇØ ¿ø½É·ÂÇÏ¿¡¼­ ¾ó¸¶³ª ´õ »¡¸® sedimentaion °ú creaming ÀÌ ÀϾ´Â Áö¸¦ ³ªÅ¸³½´Ù. RCA ¿Í ½Ã°£À» °öÇÑ °ªÀº Áß·ÂÇÏ¿¡¼­ °°Àº Á¤µµÀÇ dispersion state °¡ ÀϾ´Âµ¥ ¾ó¸¶³ª °É¸®´Â Áö¸¦ ÃøÁ¤ÇÒ ¼ö ÀÖ°Ô ÇÑ´Ù.)
...................(Áß·«)........................
2) Mixing, vibration and agitation
4.4.3 Thermal procedures
4.4.4 Physico-chemical procedures
5 Prediction of the shelf life of a dispersion
5.1 General comments
...................(Áß·«)........................
Strictly speaking, shelf life is not only related to the storage time (shelf time), but covers the total life span, from the production, storage, distribution, to the end of usage period with the end-user. (¾ö°ÝÈ÷ À̾߱âÇϸé shelf life ´Â ÀúÀå±â°£À» À̾߱âÇÏ´Â °ÍÀÌ ¾Æ´Ï¶ó »ý»ê¿¡¼­ ºÎÅÍ ¸¶Áö¸· »ç¿ëÀÚ¿¡ ÀÇÇØ »ç¿ëµÇ¾îÁö±â ±îÁöÀÇ Àüü life span À» ÀǹÌÇÑ´Ù. )
...................(Áß·«)........................
5.2 Comparative analysis
5.3 Predictive analysis
.An important purpose of dispersion stability testing is to establish product shelf life for recommended storage, display and usage conditions. (ºÐ»ê ¾ÈÁ¤¼º testing ÀÇ Áß¿äÇÑ ¸ñÀûÀº Á¦Ç°ÀÇ ÀúÀå°ú »ç¿ëÁ¶°ÇÀ» À§ÇÑ shelf life ¸¦ ¼³Á¤ÇÏ´Â °ÍÀÌ´Ù. )
...................(Áß·«)........................


 
(ÁÖ)¿µÁøÄÚÆÛ·¹ÀÌ¼Ç   |   ´ëÇ¥ : ÀÌÇü¿­   |   »ç¾÷ÀÚµî·Ï¹øÈ£ : 138-81-34745
±º Æ÷ º» »ç   |   (15853) °æ±âµµ ±ºÆ÷½Ã ÇѼ¼·Î 48 ³²¿øºôµù 2Ãþ   |   ÀüÈ­ : 1577-7956 (1)   |   Æѽº : 031-457-9188   |   À̸ÞÀÏ : info@yjcorp.co.kr
´ë Àü Áö »ç   |   (34036) ´ëÀü½Ã À¯¼º±¸ Å×Å©³ë10·Î 29 ÆÄÅ©ÆÓ¸®½º 2Ãþ   |   ÀüÈ­ : 1577-7956 (2)   |   Æѽº : 042-932-1266   |   À̸ÞÀÏ : info@yjcorp.co.kr