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Introduction

Glioblastoma multiform (GBM) is an aggressive glioma that originates from astrocytes and is associated with poor prognosis.1 

Several barriers exist in the treatment of GBM, including the localization of the tumor within the brain, a high rate of malignant 
invasion, tumor heterogeneity, and an intrinsic resistance to conventional therapies. Despite concerted efforts to overcome 
these, a lack of translational in vitro models and robust analytical tools makes deciphering the complex molecular interactions 
challenging.2,3

Technological progression has facilitated the adoption of advanced cellular models, such as primary cells or induced pluripo-
tent stem cells (iPSCs), that more precisely represent human phenotypes. This has simultaneously driven the requirement for 
label-free, non-perturbing analytical methods to accurately capture biologically relevant data in complex models and provide 
critical insights into disease processes.4,5 By eliminating fluorescent labels, this ensures that experimental observations are not 
attributed to the label, or the labeling process, and provides a method that is amenable to cell types where labeling is not fea-
sible, such as sensitive or rare cells.6, 7
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Live-cell imaging enables the acquisition of phase contrast 
images in a non-perturbing manner. Alongside the incorpo-
ration of Artificial Intelligence (AI) into image analysis work-
flows, this has empowered accurate quantification of a 
broad spectrum of cellular models, making it a powerful 
 approach to make data-driven decisions and further under-
standing of cancer biology. These innovative technologies, 
based on neural network algorithms, are more complex 
than traditional image analysis and facilitate more accurate 

segmentation of heterogenous cell morphologies whilst 
minimizing user-introduced bias.4,8

In this application note, we describe a robust solution for 
label-free cell segmentation and live/dead classification of 
individual cells using integrated AI-based software. We 
exemplify how this approach can provide high-throughput 
insights into glial cell health in response to clinically relevant 
chemotherapeutic treatments.
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Assay Principle

The Incucyte® AI Cell Health Analysis Software Module 
enables label-free quantification of cell viability. The analysis 
module uses trained convolutional neural networks 
(CNNs), which automatically analyzes phase contrast 
images to segment individual cells and classify them as live 
or dead, all in one step. This streamlined workflow (Figure 1) 
requires minimal user input, providing unbiased results 
which can be directly compared across assays.

Phase contrast images are acquired using AI Scan 
acquisition with 10X or 20X objectives in microplates up to 

384-well throughput. These images can be analyzed using 
the Incucyte® AI Cell Health Analysis Software Module 
which provides metrics such as Total Cell Count (all 
objects), as well as the number and percentage of live and 
dead cells. In cases where optional fluorescence images are 
acquired, the mean and total integrated intensity within all 
cells, as well as within the live or dead subpopulations, will 
be provided. Fluorescence classification can be performed 
as an additional analysis, again providing metrics describing 
the count and percentage of high vs. low fluorescence 
within total cells, and within live or dead subpopulations.
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Figure 1:  Incucyte® AI Cell Health Analysis Workflow. 

Phase contrast images are acquired and processed using neural networks (CNN), to automatically segment and classify cells as live or dead.

Precise segmentation provides accurate cell count data 
even at high cell confluence and yields reliable proliferation 
data. Label-free classification of cells as live or dead enables 
quantification of cell viability within a physiologically rele-
vant and non-perturbing environment. The combination of 

label-free analysis with optional fluorescence readouts from 
the live or dead subpopulations provides additional insight 
into mechanisms of cell death.
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AI-Driven Cell Segmentation

The AI Cell Health segmentation model was trained using 
phase contrast images which were manually annotated to 
identify the boundary of individual cells as described 
previously.9, 10 The resulting segmentation is highly accurate 
and adaptable to numerous cell morphologies. Figure 2 
shows the AI segmentation applied to different glial cell 

types including an adherent glioblastoma cell line (A172), a 
semi-adherent microglial cell line (BV2), flat and 
transparent primary rat cortical astrocytes (Incucyte® 
rAstrocytes), and dead cells are accurately outlined (T98G 
cells treated with Taxol (paclitaxel, 500 nM)). 

Figure 2:  Incucyte® AI Cell Health Analysis Accurately Segments a Wide Range of Live and Dead Cell Types With 
Diverse Morphologies.

HD phase contrast images were acquired using the Incucyte® Live-Cell Analysis System at 10X or 20X magnification. AI Cell segmentation (yellow outline) 
shown for glial cell types.

A172 BV2 rAstrocytes T98G + Taxol

10x 20x 20x 10x
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sis) and fluorescence classification of Cytotox positive cells. 
Phase and fluorescence blended images show live and dead 
cells for each cell type (Figure 3A). Time courses show per-
centage of dead cells in response to compound treatment 
and display comparable time- and concentration-depen-
dent responses between fluorescence (Cytotox) and Incu-
cyte® AI Cell Health classification (label-free) across all con-
ditions tested (Figure 3B). Concentration response curves 
for T98G and A172 (72h) or BV2 cells (24h) confirm analo-
gous compound efficacies using label-free and fluores-
cence analysis (Figure 3C). This confirms that the label-free 
Incucyte® AI Cell Health Analysis accurately identifies cell 
death induced by compounds with different mechanisms of 
 action across a heterogenous group of glial cell types. 

AI-Driven Live/Dead Classification

AI Cell Health Analysis can identify live and dead cells 
 without the requirement for a fluorescent reagent. For the 
validation of AI-driven classification, a wide range of cell 
types were treated with cytotoxic compounds in the pres-
ence of Incucyte® Cytotox Dye which enters non-viable 
cells, increasing their fluorescence intensity.10 Here, we 
demonstrate this validation process applied to glial cell lines 
of interest (Figure 3). 

T98G glioblastoma cells, A172 glioblastoma cells, and BV2 
microglia cells were treated with concentration ranges of 
compounds to induce cell death in the presence of 
 Incucyte® Cytotox Green Dye (Figure 3). Quantification of 
cell death was performed using both Incucyte® AI Cell 
Health Live/Dead classification (AI-driven, label-free analy-

Figure 3:  Incucyte® AI Cell Health Analysis Produces Cytotoxicity Data Comparable to Standard Fluorescence Methods.

A172, T98G, or BV2 cells were treated with concentration ranges of 3 different cytotoxic compounds in the presence of Incucyte® Cytotox Dye. 
Phase and fluorescence images are shown for live and dead cells for each cell type (A). Time courses show the percentage of dead cells over time 
using fluorescence classification (cytotox) or Incucyte® AI Cell Health Analysis (label-free). Concentration response curves plot cell death at 72 
(T98G and A172) or 24 hours (BV2) (C). Data shown as mean ± SEM, n= 3 replicates.  
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To examine drug sensitivity, we compared 3 glioblastoma 
cell lines with different PTEN expression status in their 
 response to chemotherapeutic compounds with varied 
mechanisms of action. Initially, A172 (PTEN-negative3), 
T98G (PTEN expressing13), and U87-MG cells (PTEN-defi-
cient14) were treated with 13 clinically relevant chemothera-
peutics consisting of high and low concentrations in a 
9 6-well plate (Figure 4). Microplate views of percentage of 
dead cells over time (Figure 4A) and heat maps at 72 hours 
(Figure 4B) were utilized to identify compound hits that 
suggested differential sensitivity across the three cell lines. 
Phase contrast images were used to confirm the detected 
levels of cell death (Figure 4C). For most compounds we 
observed that U87-MG had lower percentages of cell death 
compared to A172 and T98G cells, suggesting reduced 
compound sensitivity.

Chemotherapeutic Response of Glioblastoma Cells in Microplate Throughput 

Genetic heterogeneity of GBM is well recognized and is 
considered a contributing factor in the lack of effective 
chemotherapy for new and recurrent disease.11 The Akt-PI3K 
signaling pathway, which controls cell growth and  survival, is 
negatively regulated by the tumor suppressor phosphatase 
and tensin homolog (PTEN).12 Loss of PTEN function has 
been associated with uncontrolled proliferation and tumor 
resistance and PTEN is commonly deleted or mutated in up 
to 80% of GBMs.3 Information on genetic alterations and 
the mechanisms associated with tumor  resistance has the 
potential to provide the fundamental basis for more precise 
or novel therapeutic strategies. 

Figure 4:  Label-Free Screening of Glioblastoma Responses to Chemotherapeutic Compounds in Microplate Format. 

A172 (PTEN-negative), T98G (PTEN-expressing), and U87-MG (PTEN-deficient) glioblastoma cell lines were seeded into 96-well plates (2,000 cells/well) 
and once adhered, treated with high or low concentrations of 13 chemotherapeutic compounds. Microplate view shows the percentage of dead cells 
for T98G cells over 3 days (A). Heat map of the percentage of dead cells at 72 hours allows for comparison of compound toxicity across glioblastoma 
cell lines (B). Representative phase images show Incucyte® AI Cell Health Live (green) and Dead (red) classification masks for Doxorubicin (DOX) treated 
or vehicle T98G cells at 72 hours. Data shown as mean ± SEM, n= 3 replicates.  
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Four compounds were selected to investigate further based 
on observed differences in cell death. The glioblastoma cell 
lines were seeded into 96-well plates, treated with a 3-fold 
serial dilution of cisplatin, Taxol (paclitaxel), vinblastine, and 
doxorubicin, and cell death was monitored over 3 days 
(Figure 5). Concentration response curves (Figure 5A) for 
each compound are shown at 72 hours, with reported EC₅₀ 

and maximal percentage cell death values (Figure 5B). Data 
revealed differences in compound cytotoxic effects across 
cell lines and across compounds with different mechanisms 
of action, with U87-MG exhibiting reduced sensitivity 
compared to T98G and A172 cells for all compounds. For 
example, Taxol, a highly potent anti-cancer agent commonly 
used against solid tumors, induced comparable levels of 

efficacy in A172 and T98G cells with maximal cell death 
values of 73.8 % and 76.6 %, respectively, and identical EC₅₀ 
values of 0.003 μM. However, efficacy was reduced in 
U87-MG cells inducing maximal cell death of 27.1 % and 
 an EC₅₀ value of 0.014 μM.

This suggests that the PTEN status could be one of multiple 
factors, as part of complex regulatory signaling pathways, 
that modify the efficacy of these of compounds. Overall, 
the data highlights how label-free analysis can robustly be 
used to examine multiple conditions in high-throughput, 
with the potential to gain deeper insights into the genetic 
influences on drug resistance in an unbiased manner. 

Figure 5:  Profiling Cell Death Responses to Concentration Ranges of Chemotherapeutic Compounds in Glioblastoma 
Cell Lines.

A172 (PTEN-negative), T98G (PTEN-expressing), and U87-MG (PTEN-deficient) cells were seeded into 96-well plates (2,000 cells/well) and once 
adhered treated with concentration range of Cisplatin, Taxol, Vinblastine, and Doxorubicin. Transformed data at 72 hours compares compound  
efficacies (A). Table reports EC50 and maximal the percentage of dead cells values observed at 72 hours across all conditions studied (B).  
Data shown as mean ± SEM, n= 3 replicates. 
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Label-Free Analysis Enables Examination of Compound Mechanisms of Action in 
Primary Astrocytes
Traditionally the field of neuro-oncology has heavily relied on 
tumor cell lines such as neuroblastomas or glioblastomas. 
Whilst these approaches remain useful, they have limited 
translational value and are unable to fully recapitulate the 
complexity and heterogeneity observed in brain tumors. 

Consequently, there is an increase in the use of more  
sensitive or rare cell types, such as iPSCs and primary cells. 
To support drug discovery and accelerate these advanced 
models, the continued development of non-perturbing  
in vitro assays and analytical approaches are essential. 

300 nM Okadaic Acid 600 µM Monastrol

C

Vehicle
A

Figure 6:  Label-Free Analysis of Compound Mechanisms of Action.  

Primary rat cortical astrocytes (Incucyte® rAstrocytes) were seeded onto Poly-L-Lysine (PLL) coated 96-well TPP plates (2,500 cells/well) and treated 
with a concentration range of okadaic acid or Monastrol. Cell death was quantified using Incucyte® AI Cell Health Analysis Software Module. Images of 
vehicle and drug-treated conditions show AI Live (green) and Dead (red) classification masks and enable visualization of morphological changes (A). 
Time course shown for okadaic acid quantifying the percentage of dead cells (B). Time courses shown for % dead and total cell count for Monastrol (C). 
Data shown as mean ± SEM, n= 3 replicates.   
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Combined Live-Cell Analysis and Flow Cytometry Approach Yields Additional 
Insights into Cell Death 

To demonstrate the utility of this label-free analysis we 
 investigated mechanisms of drug action in primary astro-
cytes. Rat cortical astrocytes were treated with a concentra-
tion range of two compounds, okadaic acid (dual protein 
phosphatase inhibitor) and Monastrol (small molecule in-
hibitor of kinesin-5) and were monitored over 3 days using 
the Incucyte® Live-Cell Analysis System (Figure 6). Images 
at 72 hours post-treatment show AI Live and Dead classifi-
cation and revealed okadaic acid (300 nM) induced cell 
death whilst Monastrol (600 μM) was not toxic but induced 
morphological changes compared to vehicle (Figure 6A). 

Quantification of cell death showed okadaic acid had a 
concentration-dependent cytotoxic effect on the primary 
astrocytes (Figure 6B). In contrast, Monastrol exerted an 
 all-or-nothing cytostatic effect as revealed by little-to-no 
cell death but a reduction in cell proliferation (object count) 
with increasing compound concentrations (Figure 6C).  
This is consistent with known mechanisms of action and  
exemplifies how this assay is amenable to examination of 
compound effects in non-perturbing physiologically  
relevant conditions.

In the central nervous system, microglia primarily function 
as phagocytes in responding to infection or damage. Under 
pathological conditions, glioma associated microglia play 
an important role in the tumor microenvironment by re-
sponding to oncogenic signaling via the secretion of 
chemokines and cytokines that further promote tumor 
 progression.15 Research is focusing on expanding our 
 understanding of these biological roles and interactions, 
with therapies targeting microglia showing potential 
 complements to current treatments.16

We used a combined approach of live-cell analysis and ad-
vanced flow cytometry to examine cell death in a microglial 
cell line. Incucyte® AI Cell Health Analysis Software Module 
enables label-free real-time monitoring of cell death and is 
non-exhaustive, which facilitates end-point selection and 
allows for downstream experiments to be performed to 
probe deeper into mechanisms of cell death. The iQue® 
Human 4-Plex Apoptosis Kit is a flow-cytometry based 
multi-parameter assay that enables quantification of four 
different apoptosis measurements per well including 
caspase 3/7 activity, annexin V binding, cell viability, and 
 mitochondrial membrane potential (MMP) (Figure 7).

BV2 cells were treated with 3 chemotherapeutics, campto-
thecin (CMP), cisplatin (CIS), and carboplatin (CAR), all of 
which are known to cause DNA damage and activate apop-
totic pathways.17,18 Images were acquired every 2 hours and 
cell death monitored using the Incucyte® Live-Cell Analysis 
System. At 24 hours post-treatment, cells were harvested 
and labeled with the iQue® Apoptosis Kit using a no-wash 
protocol. The samples were assessed on the iQue® Ad-
vanced Flow Cytometry Platform and analyzed using inte-
grated Forecyt® Software. The data in Figure 7 highlights 
the gating strategy used for each of the apoptosis readouts 
(Figure 7A). The Forecyt® heat map shows concentration 
dependent increases in the percentage of caspase positive 
cells in response to camptothecin and cisplatin, with a 
 partial increase observed for carboplatin (Figure 7B). We 
observed similar responses across all four apoptosis read-
outs (data not shown). Comparison of the concentration 
 response curves between Incucyte® label-free and iQue® 
caspase positive readouts revealed analogous results in 
compound efficacy (Figure 7C). Taking camptothecin as an 
example, we observed EC50 values of 0.35 and 0.34 µM, 
 respectively. This approach could also be used to examine 
each apoptosis pathway in more detail for example through 
assessing caspase-dependent or independent mechanisms. 
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Summary & Conclusion

The response of tumor cells, such as glioblastomas, to 
cytotoxic chemotherapeutic compounds is a complex and 
dynamic process that is crucial to understand in neuro-
oncology research. The Incucyte® AI Cell Health Analysis 
Software Module uses pre-trained neural networks to 
accurately segment individual cells and classify them as  
live or dead. The data shown demonstrates that this is a 

powerful, robust approach for assessing cytotoxicity in glial 
cell types and is amenable to screening of therapeutic 
candidates. The label-free analysis enables non-perturbing 
quantification of cytotoxicity, which is especially important 
when using sensitive cell types, and enables downstream 
experiments, such as flow cytometry, to be performed for 
additional insights into the mechanisms of apoptosis.   

Figure 7: Combined Approach to Quantify Cell Death in Microglia Using Live-Cell Analysis and Flow Cytometry. 

BV2 microglia cells were seeded onto a poly-L-ornithine (PLO) coated 96-well plate (8,000 cells/well) and once adhered treated with concentration ranges 
of camptothecin (CMP), cisplatin (CIS) and carboplatin (CAR). Images were acquired every 2 hours in the Incucyte® Live-Cell Analysis System over 24 
hours and cell death quantified using Incucyte® AI Cell Health Analysis Software Module. At 24 hours, cells were harvested, transferred to a 96-well  
v-bottomed plate, labeled using the iQue® 4-Plex Apoptosis Kit (Cat. No. 90053) and run on the iQue® Advanced Flow Cytometry Platform. Dot plots 
show gating strategy used for each apoptosis readout (A). Heat map of 96-well plate shows caspase positive cells expressed as a percentage of single cells 
(B). Transformed data shows EC50 curves for Incucyte® quantifying the percentage of dead cells and iQue® showing the percentage of caspase positive 
cells at 24 hours (C). Data shown as mean ± SEM, n= 3 replicates. 
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