Biopharmaceutical

CS-303-1

Case Study

Corixa Study Shows Microfluidizer® Processor Results Superior to those of Leading Homogenizer

Before being acquired by **GlaxoSmithKline**, biotechnology company **Corixa** (Seattle, WA) developed and produced an oil-water emulsion to be used as a vaccine adjuvant.

CHALLENGE

Corixa was not satisfied with the high particle size variability they received from a leading homogenizer, and the percentage of particles ranging above 200 nm made sterile filtration impracticable. After meeting with Microfluidics, Corixa realized it would be possible to reduce average particle size and tighten distribution with a **Microfluidizer high shear fluid processor**, which enables a uniform processing environment through its fixed-geometry interaction chamber. Therefore, Corixa undertook an in-depth study to evaluate results achieved on a Microfluidizer processor as compared to their existing environment.

OBJECTIVES

Corixa designed a comparative study to determine the ideal technology for processing the emulsion based on the following critical quality attributes:

- Average particle size
- Polydispersity
- Active concentration post-filtration

METHODS

Three batches of pre-emulsion material were produced and subsequently separated into halves for processing in each technology. After high pressure homogenization, sterile filtration was performed. Processed materials were analyzed using laser diffraction, an HPLC with fluorescence detector and a gradual pore plugging model.

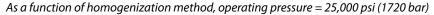
RESULTS

The Microfluidizer processor demonstrated significant improvement in every critical quality attribute identified by Corixa, as summarized below.

Comparison of Critical Quality Attributes

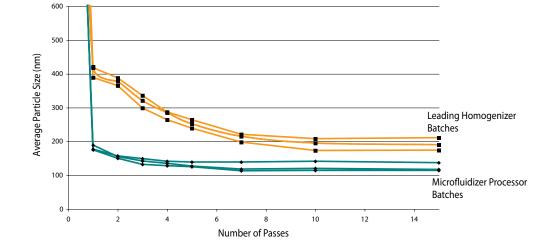
Analysis conducted on average of three batches processed by each technology

	Leading Homogenizer	Microfluidizer Processor
Average particle size	185 nm after 15 passes (best achieved)	141 nm after 3 passes
Goal: < 150 nm	\otimes	\checkmark
Polydispersity	43.1% above 200 nm	0.51% above 200 nm
Goal: < 10% above 200 nm	\otimes	\checkmark
Active concentration post-filtration	15% loss of actives	1% loss of actives
Goal: < 2% loss of actives	\otimes	\checkmark
Filter area required	640 cm ²	17 cm ²
per liter of product	The leading homogenizer required 38 times more filter area than the Microfluidizer processor	


SUCCESS AT A GLANCE

ndustry:	Biopharmaceutical	
Application:	Vaccine adjuvant	
hallenge:	Reduce variability of	
	particle sizes post-	
	processing and enable	
	effective sterile filtration	
Objective:	Compare Microfluidizer [®]	
	processor to existing	
	homogenizer	
Aethods:	Three identical batches	
	were processed by each	
	technology	
Key Results:	The Microfluidizer	
	processor outperformed	
	the homogenizer in	
	every critical metric:	
	• 50% smaller average	
	particle size	
	Significantly tighter	
	distribution	
	Negligible active loss	
	post-filtration	
	• 38 times less filter	

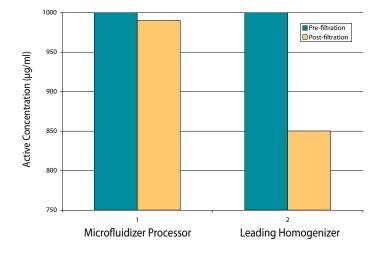
area required


Average Particle Size and Polydispersity

PRESENTED BY: JEDD TAYLOR, CORIXA

Manufacturing our emulsion with the Microfluidizer processor at a pressure of 25,000 psi with the F12Y interaction chamber allows us to achieve the following:

- Desired average particle size of less than 150 nm
- Narrow particle size distribution
- High product yields
- Ability to sterile filter the product (avoid aseptic formulation)
- Stable emulsion



What the Data Show

The average particle size of the emulsion processed by the Microfluidizer processor was, on average, **50% smaller** than results achieved on the leading homogenizer. Further, the variance between batches was significantly tighter.

Active Concentration Post-filtration

Recovery of active after filtration, averaged across three batches

What the Data Show

Due to its fixed-geometry interaction chamber and uniform processing conditions, the Microfluidizer processor exhibited high repeatability and batches were characterized by a narrow particle size distribution – resulting in negligible active loss post-filtration. Conversely, batches processed on the leading homogenizer with wide variability were subject to significant active loss post-filtration.

CONCLUSIONS

Based on these data, along with product quality and process efficiency improvements, Corixa switched from their leading homogenization equipment to a Microfluidics-powered production environment.

Microfluidics

90 Glacier Drive, Suite 1000 Westwood, MA 02090-1818 USA Tel: 1-800-370-5452 or 617-969-5452 Fax: 617-965-1213 Email: mixinginfo@idexcorp.com www.microfluidicscorp.com